# Stellar tidal disruption events

# multimessenger transients

TDAMM (Aug 23, 2022)

Sjoert van Velzen, Leiden Observatory

# Fundamental Questions

Are black holes spinning?

Is accretion physics scale invariant?

Black hole genesis in the early universe



# Stellar tidal disruption events (TDEs)

- Star passes within Roche radius (r<sub>T</sub>)
- Half of the debris remains bound
- Steep fallback rate: *t*-5/3
- Rare events: ~10<sup>4</sup> yr
  wait time per galaxy
- M>10<sup>8</sup> M<sub>☉</sub>, Roche radius inside black hole horizon



# **Fundamental Questions**

Are black holes spinning?

Is accretion physics scale invariant?

Black hole genesis in early universe TDE rate at high black hole mass

Radio + X-ray monitoring of TDEs

TDE rate in low-mass galaxies

#### Spectrum of a tidal disruption flare



van Velzen et al. (Science, 2016); ASASSN-14li (Holoien et al. 2016)

#### Spectrum of a tidal disruption flare



van Velzen et al. (Science, 2016); ASASSN-14li (Holoien et al. 2016)

## X-ray state changes



AT 2018fyk Wevers et al. (2021)

# QPO detection: probe spin





Pasham et al. (2019) observations of ASASSN-14li

# Results from SRG/eROSITA



- 13 X-ray selected TDEs
  - Soft spectra, large flux increase
- Optical dim
- Relatively high mass host galaxies
- X-ray rate lower than optical rate

Sazonov et al. (arXiv:2108.02449)

#### Spectrum of a tidal disruption flare



# Radio / X-ray cross-correlation





# ~10 TDEs detected via radio follow-up

- High luminosity jetted TDEs: powered by BH (Sw J1644+57)
- Origin of low-luminosity radio emission from thermal TDEs debated:
  - (sub)-relativistic jet
  - outflow from disk
  - unbound stellar debris
- ~1/4 of thermal TDEs detected in radio
- Few radio-selected TDEs candidates (Mooley eta al. 2016; Anderson et al. 2019; Somalwar et al. 2021)



#### Radio transients on ~1 year timescale

#### Are these due to stellar tidal disruptions?

 Possible, but both sources show evidence for accretion prior to the radio flare



#### Radio transients on ~1 year timescale

#### Are these due to stellar tidal disruptions?

- Possible, but both sources show evidence for accretion prior to the radio flare
- IR flare in one case (VT J1548)
  - AGN with large IR flares are also more radio-loud (Dai+20)



#### Radio transients on ~1 year timescale

#### Are these due to stellar tidal disruptions?

- Possible, but both sources show evidence for accretion prior to the radio flare
- IR flare in one case (VT J1548)
  - ► AGN with large IR flares are also more radio-loud (Dai+20)
- Connection to state transition of the accretion disk?



#### Spectrum of a tidal disruption flare



van Velzen et al. (Science, 2016); ASASSN-14li (Holoien et al. 2016)

#### TDE locus in optical surveys (2011)



adapted from van Velzen et al. (2011)

#### TDE locus in optical surveys (2022)



Now including 30 TDEs from ZTF-I (van Velzen et al. 2021; Hammerstein et al. 2022)

#### TDE locus in optical surveys (2022)



Now including 30 TDEs from ZTF-I (van Velzen et al. 2021; Hammerstein et al. 2022)

#### The event rate as a function of black hole mass



Based on van Velzen (2018); updated with data from data from Wevers, van Velzen et al. (2017), Wevers et al. (2019)

#### The event rate as a function of black hole mass



Based on van Velzen (2018); updated with data from data from Wevers, van Velzen et al. (2017), Wevers et al. (2019)

# Measuring the average spin of quiescent black holes



ASASSN-15lh: Leloudas et al. (2016)

Figure: Stone & van Velzen (2022, in prep)



Volumetric rate (Mpc



Volumetric rate (Mpc

19

### Host galaxies: preference for "green valley"



# 65% of TDEs in green valley compared to 10% of normal galaxies

Hammerstein et al. 2021

#### Similar to post-starburst preference

(Arcavi et al. 2014; French et al. 2016; Law-Smith et al. 2017; Graur et al. 2017)

# Black hole mass and decay time



## Summary of optical/UV emission



#### **Information about:**

- Density in photosphere;
  density of star(?)
- BH mass
- BH mass, stellar mass(?)

Data of PS-10jh Gezari et al. (2012, 2015); van Velzen et al. (2019)

#### Spectrum of a tidal disruption flare





absorbed  $TDE\ UV\ flux = IR\ emission$ 

$$Q_{\rm UV} \frac{L_{\rm abs} a^2}{4R^2} = 4\pi a^2 Q_{\rm IR} \sigma T_{\rm d}^4$$



- R ~ 0.1 pc
- $L_{abs} \sim 10^{45} \text{ erg/s}$
- Covering factor:
  L<sub>abs</sub>/L<sub>dust</sub> ~ 1%



absorbed  $TDE\ UV\ flux = IR\ emission$ 

$$Q_{\rm UV} \frac{L_{\rm abs} a^2}{4R^2} = 4\pi a^2 Q_{\rm IR} \sigma T_{\rm d}^4$$



- R ~ 0.1 pc
- $L_{abs} \sim 10^{45} \text{ erg/s}$
- Covering factor:
  L<sub>abs</sub>/L<sub>dust</sub> ~ 1%





•  $L_{abs} \sim 10^{45} \text{ erg/s}$ 

Covering factor:
 L<sub>abs</sub>/L<sub>dust</sub> ~ 1%

absorbed *TDE UV flux* = *IR emission* 

$$Q_{\rm UV} \frac{L_{\rm abs} a^2}{4R^2} = 4\pi a^2 Q_{\rm IR} \sigma T_{\rm d}^4$$



absorbed  $TDE\ UV\ flux = IR\ emission$ 

$$Q_{\rm UV} \frac{L_{\rm abs} a^2}{4R^2} = 4\pi a^2 Q_{\rm IR} \sigma T_{\rm d}^4$$



- R ~ 0.1 pc
- $L_{abs} \sim 10^{45} \text{ erg/s}$
- Covering factor:
  L<sub>abs</sub>/L<sub>dust</sub> ~ 1%





•  $L_{abs} \sim 10^{45} \text{ erg/s}$ 



absorbed TDE UV flux = IR emission

$$Q_{\rm UV} \frac{L_{\rm abs} a^2}{4R^2} = 4\pi a^2 \, Q_{\rm IR} \sigma T_{\rm d}^4$$



absorbed  $TDE\ UV\ flux = IR\ emission$ 

$$Q_{\rm UV} \frac{L_{\rm abs} a^2}{4R^2} = 4\pi a^2 Q_{\rm IR} \sigma T_{\rm d}^4$$

#### Multi-messenger astronomy



#### AT2019dsg: first TDE with a neutrino counterpart

- Radio detected
- High UV luminosity (2<sup>nd</sup> highest flux on Earth)
- p=0.005 for change coincidence
- Neutrino arrived late, about
  6 months post peak



#### Radio monitoring with the VLA

#### Constant energy injection by central engine





### AT2019dsg: record-breaking dust echo

Strongest of all ZTF transients (TDEs and AGN)



### AT2019dsg: record-breaking dust echo

Strongest of all ZTF transients (TDEs and AGN)



#### Systematic search for neutrinos from dust echoes

- Collect all infrared dust echoes
- Unifies TDEs and AGN flares
- Results:
  - Large echoes exclusively from low-mass black holes



van Velzen, Stein, et al. (under review; arXiv:2111.09391)

#### Systematic search for neutrinos from dust echoes

- Collect all infrared dust echoes
- Unifies TDEs and AGN flares
- Results:
  - Large echoes exclusively from low-mass black holes
  - Three events coincident with IceCube alerts



van Velzen, Stein, et al. (under review; arXiv:2111.09391)

#### Systematic search for neutrinos from dust echoes

- Collect all infrared dust echoes
- Unifies TDEs and AGN flares
- Results:
  - Large echoes exclusively from low-mass black holes
  - Three events coincident with IceCube alerts
  - $p\sim10^{-4} = 3.6 \text{ sigma}$



van Velzen, Stein, et al. (under review; arXiv:2111.09391)

- AT2019dsg: strongest dust echo in ZTF
- AT2019aalc: highest IR echo flux in ZTF



- AT2019dsg: strongest dust echo in ZTF
- AT2019aalc: highest IR echo flux in ZTF
- All three neutrino associations:



- AT2019dsg: strongest dust echo in ZTF
- AT2019aalc: highest IR echo flux in ZTF
- All three neutrino associations:
  - Detected in the radio (uncommon for AGN)



- AT2019dsg: strongest dust echo in ZTF
- AT2019aalc: highest IR echo flux in ZTF
- All three neutrino associations:
  - Detected in the radio (uncommon for AGN)
  - Detected in X-ray, with soft spectra (very uncommon for AGN)



### Summary: what can TDEs do for you?

- Large samples: measure black hole spin, black hole occupation
- Monitoring X-ray/radio: measure spin (QPOs) and accretion physics
- Neutrino detections: learn about PeV-scale particle acceleration
- Could produce detectable mHz **GW** emission (Stone et al. 2013; Toscani et al. 2020; Pfister et al. 2021)





- More TDEs with Rubin Observatory: 10-1000 per year
- More detections in (blind) radio surveys: VLASS, DSA-1000, ngVLA, SKA
- Optical/UV detections from space: Gaia, EUCLID, ULTRASAT, Roman
- More IR detections: ground based, JWST(?) and NEO surveyor



- UV follow-up is key: ULTRASAT; UVEX; deep ground-based u-band
- Data: X-ray high cadence monitoring
  - Follow-up of optical- or X-ray selected sources
- Theory: explain extreme variability of AGN; connection to PeV particles

#### Thanks!

### Backup slides

#### Photometric selection of TDEs with ZTF



# A neutrino coincident with a tidal disruption event Paintball-based significance (p=0.005)



# A neutrino coincident with a tidal disruption event Paintball-based significance (p=0.005)



# A neutrino coincident with a tidal disruption event Paintball-based significance (p=0.005)



#### AT2019fdr (TDE?): another large dust echo - Reusch et al (arXiv:2111.09390)



## At late-times we see a disk



#### Common for latetime light curves

(van Velzen, Stone, et al. 2019)

Disk origin confirmed with late-time X-ray detections

(Jonker et al. 2019)

\*Holoien et al. 2016

time since peak (days)

## Surprising X-ray flares



- Flaring on ~day timescale
- Short "accretion events" of mass deflected from stream intersection point?
- Similar luminosity for optical/ UV and X-ray
- This ratio is naturally explained by small gaps in a reprocessing layer covering the X-ray emitting engine

#### **URLs for movies:**

https://www.desy.de/news/news\_search/index\_eng.html?openDirectAnchor=2030&two\_columns=0

https://www.youtube.com/watch?v=- dFQYQCmqk

https://www.nasa.gov/feature/goddard/2021/nasa-s-swift-helps-tie-neutrino-to-star-shredding-black-hole